
Developer's Eisenhower Matrix

Your Code Quality & Velocity Dashboard

Hot Fix Real Engineering

Automate/Delegate Delete/Ignore

www.eisenhowermatrix.com/templates/eisenhower-matrix-for-software-developers/ 1 / 7

How to Use This as a Developer

Your value isn't in closing tickets—it's in solving problems elegantly. This matrix helps

you balance urgency with code quality.

The Developer's Decision Tree

if (production_broken) return 'Q1'; if (improves_codebase || builds_skills) return 'Q2'; if

(someone_else_can_do) return 'Q3'; else return 'Q4'; // probably delete

Remember

• Technical debt is a Q2 priority, not Q4 • Learning time is work time • Clean code is

faster in the long run • Meetings aren't your real work • Ship early, iterate often

The Developer's 3-Question Algorithm

Quick decision tree for any task:

Question 1

Is production broken or will the build fail?

If YES: It's URGENT → Continue to Q2

If NO: It's NOT URGENT → Continue to Q2

Question 2

Will this improve code quality, performance, or my skills

long-term?

If YES: It's IMPORTANT → Place based on urgency

www.eisenhowermatrix.com/templates/eisenhower-matrix-for-software-developers/ 2 / 7

If NO: It's NOT IMPORTANT → Place based on urgency

Question 3

Can this be automated, scripted, or handled by someone

else?

If YES: Consider DELEGATING/AUTOMATING (especially if in Q3)

If NO: You need to code it yourself

www.eisenhowermatrix.com/templates/eisenhower-matrix-for-software-developers/ 3 / 7

Examples for Each Quadrant

Crisis Mode (Hot Fixes)

Real fires that block users or development

Production server is down - Users can't access the application

Security vulnerability in prod - Data breach risk is immediate

Blocking bug for major release - Can't ship without fixing

Data corruption issue - Actively damaging user data

Payment processing broken - Directly impacts revenue

Quality Zone (Real Engineering)

The work that separates good devs from great ones

Refactoring legacy code - Reduces future bugs and speeds development

Writing documentation - Future you will thank current you

Learning new technologies - Staying relevant in the industry

Performance optimization - Better UX and lower costs

Test coverage improvement - Confidence in your code

Interrupt Zone (Context Switches)

Others' urgencies disrupting your flow

Non-critical Slack messages - Batch check 2-3 times daily

Status update requests - Automate with tools

Routine code reviews - Schedule specific time blocks

Meeting note-taking - Rotate responsibility

Environment setup for others - Document the process

Danger Zone (Time Sinks)

The rabbit holes that eat your day

Premature optimization - Making it 1ms faster doesn't matter yet

www.eisenhowermatrix.com/templates/eisenhower-matrix-for-software-developers/ 4 / 7

Bikeshedding in PR reviews - Tabs vs spaces doesn't matter

Endless tool configuration - Your vim setup is fine already

Rewriting working code - If it ain't broke, don't fix it

Framework FOMO chasing - The new hotness isn't always better

www.eisenhowermatrix.com/templates/eisenhower-matrix-for-software-developers/ 5 / 7

Common Teacher Traps to Avoid

The Shiny Object Syndrome

Constantly switching to the newest framework or tool instead of mastering what

you have.

Solution: New tech is Q2 learning time, not Q1 production code. Learn it, evaluate

it, then decide.

The Perfection Paralysis

Endlessly refactoring code that already works well enough.

Solution: Ship at 80% and iterate. Perfect code that never ships helps no one.

The Hero Complex

Being the only one who understands critical parts of the codebase.

Solution: Document and share knowledge. Bus factor of 1 is a risk, not a badge of

honor.

The Yes Developer

Accepting every feature request, bug fix, and 'quick favor' that comes your way.

Solution: Your job is to deliver value, not to make everyone happy. Learn to say 'not

now' or 'here's the trade-off.'

www.eisenhowermatrix.com/templates/eisenhower-matrix-for-software-developers/ 6 / 7

The Developer's Daily Standup with Your Matrix

10 minutes to optimize your algorithm for the day

Morning (7 minutes)

1. Check build status and error logs

2. Review PR comments and blockers

3. Sort Jira tickets into quadrants

4. Choose ONE Q2 task to complete

5. Block 2+ hours of focus time

Afternoon (3 minutes)

1. Commit and push completed work

2. Update ticket status

3. Note any tech debt created

4. Plan tomorrow's Q2 task

5. Close unnecessary tabs (yes, all 47)

© 2025 EisenhowerMatrix.com and Appfluence Inc. Visit us at https://www.eisenhowermatrix.com

www.eisenhowermatrix.com/templates/eisenhower-matrix-for-software-developers/ 7 / 7

https://www.eisenhowermatrix.com/

